Mar Giralt Miron
Postdoc researcher in dynamical systems
About me:
Postdoc researcher at the IMCCE at Observatoire de Paris with a MathInGreaterParis postdoctoral fellowship.
Previously, postdoc researcher at Università degli Studi di Milano and PhD student at Universitat Politècnica de Catalunya.
Research interests: Hamiltonian systems, Celestial Mechanics, chaotic dynamics, splitting of separatrices phenomenon.
Contact details:
IMCCE - Bât. A, Bureau 510. Observatoire de Paris, Université PSL.
77, avenue Denfert Rochereau. 75014 Paris (France)
✉️: mar.giralt [at] obspm.fr
Publications:
Space debris in Medium Earth Orbit :
E.M Alessi, I. Baldomá, M. Giralt, M. Guardia and A. Pousse. On the role of the fast oscillations in the secular dynamics of the lunar coplanar perturbation on Galileo satellites. Communications in Nonlinear Science and Numerical Simulation 142:108498, 2025. [Journal] [Repository].
E.M Alessi, I. Baldomá, M. Giralt and M. Guardia. On the Arnold diffusion mechanism in Medium Earth Orbit.
Journal of Nonlinear Science 35(8), 2025. [Journal] [Repository].
Study of the invariant manifolds of L3 in the RPC3BP :
I. Baldomá, M. Giralt and M. Guardia. Coorbital homoclinic and chaotic dynamics in the Restricted 3-Body Problem.
Preprint arXiv:2312.13819, 2023. [Preprint].I. Baldomá, M. J. Capiński, M. Giralt and M. Guardia. Breakdown of homoclinic orbits to L3: Nonvanishing of the Stokes constant.
Discrete and Continuous Dynamical Systems, 45(1): 56-88, 2024. [Journal] [Repository].I. Baldomá, M. Giralt and M. Guardia. Breakdown of homoclinic orbits to L3 in the RPC3BP (II). An asymptotic formula.
Advances in Mathematics, 430:109218, 2023. [Journal] [Repository].I. Baldomá, M. Giralt and M. Guardia. Breakdown of homoclinic orbits to L3 in the RPC3BP (I). Complex singularities and the inner equation.
Advances in Mathematics, 408:108562, 2022. [Journal] [Repository].M. Giralt. Homoclinic and chaotic phenomena to L3 in the Restricted 3-Body Problem. PhD Thesis, 2022. [UPC repository] [TDX repository].
Some presentations:
An Arnold diffusion mechanism for the Galileo satellites:
Coorbital homoclinic and chaotic dyamics in the Restricted 3-Body Problem:
From topology to computations in dynamical systems (Kraków 2024): [Slides]
Journées de dynamique 2023 de l'IMJ-PRG (October 2023): [Slides].
PhD Thesis Defense (November, 2022): [Slides].
GLADS2022. Global and Local Aspects in Dynamical Systems (July 2022): [Poster]
BIRS-Oaxaca. Geometric and Variational Methods in Celestial Mechanics Workshop (June 2022): [Slides].
Breakdown of homoclinic orbits to L3:
Last update: December 23rd, 2024.
Art by Helena Aguilar-Giralt