Mar Giralt Miron
Postdoc researcher in dynamical systems
About me:
Postdoc researcher at the IMCCE at Observatoire de Paris with a MathInGreaterParis postdoctoral fellowship.
Previously, postdoc researcher at Università degli Studi di Milano and PhD student at Universitat Politècnica de Catalunya.
Research interests: Hamiltonian systems, Celestial Mechanics, chaotic dynamics, splitting of separatrices phenomenon.
Contact details:
IMCCE - Bât. A, Bureau 510. Observatoire de Paris, Université PSL.
77, avenue Denfert Rochereau. 75014 Paris (France)
✉️: mar.giralt [at] obspm.fr
Publications:
Space debris in Medium Earth Orbit :
E.M Alessi, I. Baldomá, M. Giralt, M. Guardia and A. Pousse. On the role of the fast oscillations in the secular dynamics of the lunar coplanar perturbation on Galileo satellites.
Preprint arXiv:2405.14593, 2024. [Preprint].E.M Alessi, I. Baldomá, M. Giralt and M. Guardia. On the Arnold diffusion mechanism in Medium Earth Orbit.
Preprint arXiv:2312.13819, 2024. [Preprint].
Study of the invariant manifolds of L3 in the RPC3BP :
I. Baldomá, M. Giralt and M. Guardia. Coorbital homoclinic and chaotic dynamics in the Restricted 3-Body Problem.
Preprint arXiv:2312.13819, 2023. [Preprint].I. Baldomá, M. J. Capiński, M. Giralt and M. Guardia. Breakdown of homoclinic orbits to L3: Nonvanishing of the Stokes constant.
Discrete and Continuous Dynamical Systems, 45(1): 56-88, 2024. [Journal] [Repository].I. Baldomá, M. Giralt and M. Guardia. Breakdown of homoclinic orbits to L3 in the RPC3BP (II). An asymptotic formula.
Advances in Mathematics, 430:109218, 2023. [Journal] [Repository].I. Baldomá, M. Giralt and M. Guardia. Breakdown of homoclinic orbits to L3 in the RPC3BP (I). Complex singularities and the inner equation.
Advances in Mathematics, 408:108562, 2022. [Journal] [Repository].M. Giralt. Homoclinic and chaotic phenomena to L3 in the Restricted 3-Body Problem. PhD Thesis, 2022. [UPC repository] [TDX repository].
Some presentations:
An Arnold diffusion mechanism for the Galileo satellites:
Coorbital homoclinic and chaotic dyamics in the Restricted 3-Body Problem:
From topology to computations in dynamical systems (Kraków 2024): [Slides]
Journées de dynamique 2023 de l'IMJ-PRG (October 2023): [Slides].
PhD Thesis Defense (November, 2022): [Slides].
GLADS2022. Global and Local Aspects in Dynamical Systems (July 2022): [Poster]
BIRS-Oaxaca. Geometric and Variational Methods in Celestial Mechanics Workshop (June 2022): [Slides].
Breakdown of homoclinic orbits to L3:
Last update: July 28th, 2024.
Art by Helena Aguilar-Giralt